( Originally Published 1897 )
Another one of Nature's processes in which bacteria have played an important part is in the formation of coal. It is unnecessary to emphasize the importance of coal in modern civilization. Aside from its use as fuel, upon which civilization is dependent, coal is a source of an endless variety of valuable products. It is the source of our illuminating gas, and ammonia is one of the products of the gas manufacture. From the coal also comes coal tar, the material from which such a long series of valuable materials, as aniline colours, carbolic acid, etc., is derived. The list of products which we owe to coal is very long, and the value of this material is hardly to be over-rated. In the preparation of these ingredients from coal bacteria do not play any part. Most of them are derived by means of distillation. But when asked for the agents which have given us the coal of the coal beds, we shall find that here, too, we owe a great debt to bacteria.
Coal, as is well known, has come from the accumulation of the luxuriant vegetable growth of the past geological ages. It has therefore been directly furnished us by the vegetation of the green plants of the past, and, in general, it represents so much carbonic dioxide which these plants have extracted from the atmosphere. But while the green plants have been the active agents in producing this assimilation, bacteria have played an important part in coal manufacture in two different directions. The first appears to be in furnishing these plants with nitrogen. Without a store of fixed nitrogen in the soil these carboniferous plants could not have grown. This matter has already been considered. We have no very absolute knowledge as to the agency of bacteria in furnishing nitrogen for this vegetation in past ages, but there is every reason to believe that in the past, as in the present, the chief source of organic nitrogen has been from the atmosphere and derived from the atmosphere through the agency of bacteria. In the absence of any other known factor we may be pretty safe in the assumption that bacteria played an important part in this nitrogen fixation, and that bacteria must therefore be regarded as the agents which have furnished us the nitrogen stored in the coal.
But in a later stage of coal formation bacteria have contributed more directly to the formation of coal. Coal is not simply accumulated vegetation. The coal of our coal beds is very different in its chemical composition from the wood of the trees. It contains a much higher percentage of carbon and a lower percentage of hydrogen and oxygen than ordinary vegetable substances. The conversion of the vegetation of the carboniferous ages into coal was accompanied by a gradual loss of hydrogen and a consequent increase in the percentage of carbon. It is this change that has added to the density of the substance and makes the greater value of coal as fuel. There is little doubt now as to the method by which this woody material of the past has been converted into coal. The same process appears to be going on in a similar manner to-day in the peat beds of various northern countries. The fallen vegetation, trees, trunks, branches, and leaves, accumulate in masses, and, when the conditions of moisture and temperature are right, begin to undergo a fermentation. Ordinarily this action of bacteria, as already noticed, produces an almost complete though slow oxidation of the carbon, and results in the total decay of the vegetable matter. But if the vegetable mass be covered by water and mud under proper conditions of moisture and temperature, a different kind of fermentation arises which does not produce such complete decay. The covering of water prevents the access of oxygen to the fermenting mass, an oxidation of the carbon is largely prevented, and the vegetable matter slowly changes its character. Under the influence of this slow fermentation, aided, probably by pressure, the mass becomes more and more solid and condensed, its woody character becomes less and less distinct, and there is a gradual loss of the hydrogen and the oxygen. Doubtless there is a loss of carbon also, for there is an evolution of marsh gas which contains carbon. But in this slow fermentation taking place under the water in peat bogs and marshes the carbon loss is relatively small ; the woody material does not become completely oxidized, as it does in free operations of decay. The loss of hydrogen and oxygen from the mass is greater than that of carbon, and the percentage of carbon therefore in-creases. This is not the ordinary kind of fermentation that goes on in vegetable accumulations. It requires special conditions and possibly special kinds of fermenting organisms. Peat is not formed in all climates. In warm regions, or where the woody matter is freely exposed to the air, the fermentation of vegetable matter is more complete, and it is entirely destroyed by oxidation. It is only in colder regions and when covered with water that the destruction of the organic matter stops short of decay. But such incomplete fermentation is still going on in many parts of the world, and by its means vegetable ac-cumulations are being converted into peat.
This formation of peat appears to be a first step in the formation of denser coal. By a continuation of the same processes the mass becomes still more dense and solid. As we pass from the top to the bottom of such an accumulation of peat, we find it becoming denser and denser, and at the bottom it is commonly of a hard consistence, brownish in colour, and with only slight traces of the original woody structure. Such material is called lignite. It contains a higher percentage of carbon than peat, but a lower percentage than coal, and is plainly a step in coal formation. But the process goes on, the hydrogen and oxygen loss continuing until there is finally produced true coal.
If this is the correct understanding of the formation of coal, we see that we have plainly a process in which bacterial life has had a large and important share. We are, of course, densely ignorant of the exact processes going on. We know nothing positively as to the kind of micro-organisms which produce this slow, peculiar fermentation. As yet, the fermentation going on in the formation of the peat has not been studied by the bacteriologists, and we do not know from direct experiment that it is a matter of bacterial action. It has been commonly regarded as simply a slow chemical change, but its general similarity to other fermentative processes is so great that we can have little hesitation in attributing it to micro-organisms, and doubtless to some forms of plants allied to bacteria. There is no reason for doubting that bacteria existed in the geological ages with essentially the same powers as they now possess, and to some forms of bacteria which grow in the absence of oxygen can we probably attribute the slow change which has produced coal. Here, then, is another great source of wealth in Nature for which we are de-pendent upon bacteria. While, of course, water and pressure were very essential factors in the deposition of coal, it was a peculiar kind of fermentation occurring in the vegetation that brought about the chemical changes in it which resulted in its transformation into coal. The vegetation of the carboniferous age was dependent upon the nitrogen fixed by the bacteria, and to these organisms also do we owe the fact that this vegetation was stored for us in the rocks.
http://www.oldandsold.com
http://www.oldandsold.com
No comments:
Post a Comment